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RESPONSE AND OPTIMIZATION OF AN ISOLATION
SYSTEM WITH RELAXATION TYPE DAMPING

by
Thomas F. Derby and Peter C. Calcaterra

Barry Controls
Division of Barry Wright Corporation
Watertown, Massachusetts

SUMMARY

The scope of the investigation reported herein deals with the
effect of damping on the free vibration, impulse, random vibration,
and shock pulse response of mechanical isolation systems which
incorporate elastically coupled damping elements. The response
quantities considered are the acceleration of the mass and the
deflection of the isolator, with the acceleration of the base as
the input. :

The nature of the free vibration is investigated first by con-
sidering the roots of the characteristic equation. The regions in
which the system is underdamped, critically damped, and overdamped
are established as functions of dimensionless combinations of the
system parameters.

The impulse response is considered next. The excitation in
this case is an acceleration of the base equivalent to an impulse
of area V (i.e., a velocity step of magnitude V). Computer solu-
tions are obtained for the peak values of the acceleration and dis-
placement. The results are presented graphically in dimensionless
form as functions of dimensionless parameters of the system. The
parameters for this system are optimized according to a shock iso-
lator optimization criteria which states: "For a given input and
maximum deflection of the isolator, find the isolator parameters
that will minimize the peak acceleration of the isolated mass.”
Trade-off limit curves (i.e., a plot of the minimum acceleration
expressed in g's versus a dimensionless parameter containing the
deflection of the isolator and the level of the input) are also
presented and compared to the best possible trade-off limit curve
independent of the isolator configuration.

The response to random vibration is then investigated. The
random excitation is taken to be white noise acceleration of the
base. The response quantities are the RMS values of the accelera-
tion of the mass and the deflection of the isolator. Results are
presented graphically, and the system is optimized in much the
same manner as for the impulse response.

Finally, the responses to various shock pulses are presented
and compared to the impulse responses.




INTRODUCTION

A recent study of the vibration transmission and resonance
characteristics of vibration isolation systems [Ref. 1] has shown
that the mathematical models employing directly coupled damping
elements most frequently used by vibration engineers provide a
poor representation of many of the dynamic response characteristics
of mechanical systems as observed in practice. Mathematical models
employing elastically coupled damping elements (also referred to as
relaxation type damping) were shown to provide a substantially im-

proved representation.

A literature search was conducted to find material on the
response of an isolation system using relaxation type damping to
random vibration and shock excitation. Reference 2 is one of the
first papers about this system. It gives the equation of motion
but does not give any responses to specific inputs. Reference 3
is a more detailed mathematical description of this system and
gives the impulse response for various values of the parameters.
Reference 4 uses this system to model an isolation system using an
elastomer as the resilient element and concludes that this system
is a better model than the standard model which uses a spring and
damper in parallel. Reference 5 presents some optimum values of
damping for this system and also presents some time history re-
sponses to two types of shock input. Reference 6 compares the
response of the relaxation system to the standard isolation system

(i.e., spring and damper in parallel) for two particular shock inputs.
This report presents analyses and graphical results for free

vibration, impulse response, response to random vibration, and
response to various pulse shapes for an isolation system using
relaxation type damping. Optimum values of the system parameters
are defined for each case. Recommendations are made for selecting
values of parameters other than those optimized according to the

chosen performance criteria.




DEFINITION OF SYMBOLS

There are no dimensions given in the definitions since the
gquantities are always used as dimensionless ratios. Quantities
that are defined in the text and used only immediately afterward
are not defined here.

a = absolute displacement of the foundation (Figure 1)
éo = maximum acceleration of the foundation
c , ¢’ = viscous damping coefficients (Figure 1)
F = force transmitted to the foundation or magnitude
of a constant force device
£ = frequency
fo = wo/2ﬂ = undamped natural frequency
fe = expected frequency
= acceleration of gravity
, k' = spring constants (Figure 1)
£ = Laplace transform operator
m = mass (Figure 1)
= gtiffness ratio (Figure 1)
P = force applied to mass (Figure 1)
s = Laplace transform wvariable
T = l/f0 = 2ﬂ/wo = undamped natural period
t = time
t1 = time duration of pulse
v = magnitude of velocity step (area of acceleration
impulse)
W = magnitude of acceleration spectral density




absolute displacement of mass (Figure 1)
maximum acceleration of the mass
s/wO = nondimensional Laplace transform variable

real roots or real and imaginary parts of complex

roots (Equations 9 and 13)

X - a = deflection of the isolator
maximum deflection of the isolator
c/2Vkm = viscous damping ratio

optimum damping ratio to minimize either mass

acceleration or isolation deflection

optimum damping ratio to minimize parameters

.a . 3
Soxo GRMS *RMS
vz °F W2
o
wot = nondimensional time
w_ti = nondimensional time duration of pulse

(@)

undamped natural frequency

k
m




EQUATIONS OF MOTION

The equations of motion for the vibration isolation systems
with elastically coupled: viscous damping shown in Figure 1l(a) and
1(b) respectively are

(%%) ; + m¥ + ¢ (E—i—l) S + kS =P + ) (1)

7/

C
m = ’

k .. /f N . +f N _ c .
[N—+—1 X+mx+c(m)5+k(ﬁ‘—1)5‘P+[m]P (2)

where § = x-a.

The form of the differential equation of motion is the same
for these two systems. Therefore they can be made dynamically

equivalent by equating coefficients of like terms, namely
_ N y
K _(———N N 1) K (3)

_( N 2.
c -(m> c (4)

Because of this equivalence, only the unprimed system shown in
Figure 1 (a) and described by Equation (1) will be considered.
The results are presented in terms of the undamped natural fre-
quency w, = /k/m , the viscous damping ratio ¢ = c/2v/km , and
the stiffness ratio N.

Two types of excitation are considered: (1) acceleration of
the base &; and (2) force on the mass P. When the excitation
is the acceleration of the base, the system response is charac-
terized by acceleration of the mass % and the relative deflec-
tion across the isolator &. Taking the Laplace transform of

Equation (1), with P = P = 0, the following transfer functions




are obtained

N
xgs; SN+ 1)w? s tamwmrn Yo (5
éi s (o] N 2 2 N 3
s° + 5% w, s + (N + l)wos + i3 Wy
N
§(s) _ _ s * 37 Y (6)
a(s) 3 4, N_ 2 2 N s
s° + 2T w, s + (N + l)wos + 5T w

When the excitation is a force on the mass, the system
response is characterized by the force F transmitted to the
base through the isolator and the deflection of the isolator Xx.
The following equivalent relations between transfer functions

were obtained:

F(s) _ X(s)
P(s) = &(s)

(7)

§(s) _ 8(s)
P(s)/m  &(s)

(8)

Therefore, only the responses to an acceleration of the base need

be considered, and the results obtained from these analyses will

be applicable to the responses to a force on the mass.




FREE VIBRATION

The characteristic equation for this system is obtained by
setting the denominator in Equations (5) and (6) equal to zero.
The roots of the characteristic equation determine the form of
the time history of free vibration., The time history is oscil-
latory if there is one real root and a pair of complex conjugate
roots, and is non-oscillatory if there are three real roots. If
at least two of the three real roots are equal, the time history
is on the border line between being oscillatory (underdamped) and
non-oscillatory (overdamped) and the system is said to be criti-
cally damped. The roots of the characterisitic equation are all
’proportional to the undamped natural frequency we (i.e., if the
characteristic equation is divided by wo® the roots of s/w, can
be determined as functions of .{ and N). Therefore, for a given
value of N, a value of { that causes the system to be critically
damped will be designated as (dy. Values of (cr are found by
eguating the modified characteristic polynomial to a solution

containing at least two equal roots:

s Y, N[V s N 5 2

Expanding the right hand side of Equation (9) and setting the
coefficients of s/w, equal to those on the left hand side results

in:




For N < 8, there is no value of z that will satisfy Equa-
tions (10) and (11) and therefore, the time history of free vibra-
tion is always oscillatory. For N = 8, there is a triple root of
the characteristic equation (i.e., a = B =+13) and there is only
one value of the damping ratio, Cop = 4/3+/3, that satisfies
Equations (10) and (11). These values of Cop are displayed graphi-
cally in Figure 2. To more fully illustrate the nature of the roots
of the characteristic equation, the root locus plots are shown in
Figures 3, 4, and 5 for values of N equal to 3, 8, and 15, re-
spectively. From the root locus plots it is easily seen that the
dividing line between oscillatory and non-oscillatory motion oc-
curs when there are at least two.equal real roots. The pair of
complex conjugate roots must reach the real axis at the same
point, as ¢ is increased from zero, and must leave the real axis

at the same point, as [ is further increased.

The free vibration time histories, when the initial condition
is a negative wvelocity of the mass of magnitude V, are identical
to the time history responses to an acceleration of the base in

the form of an impulse of area V. These responses will be consi-

dered in the next section of the report.




IMPULSE RESPONSE

The excitation in this case is an acceleration of the base
equivalent to an impulse of area V (i.e., a velocity step of
magnitude V or a displacement ramp of slope V). The Laplace

transform of base acceleration & is
a(s) =V (12)

and the acceleration and displacement responses are obtained by
taking the inverse Laplace transform of Equations (5) and (6),
respectively, and multiplying by V. The roots of the characteris-
tic equation are found by letting v = s/wO and solving for the

roots of:
Yo + 5z ¥® 4+ (N41) y + §z = 0 (13)
Defining a nondimensional time as
T =0t (14)

and using the roots obtained from Equation (13), Eguations (5)
and (6) can be inverted to give the impulse responses. These are
presented in Table I. In order to solve for the peak values of
the nondimensional impulse responses Q it is not necessary to
specify an undamped natural frequency w, but just a stiffness

ratio N and a viscous damping ratio z.




TABLE I

ROOTS IMPULSE RESPONSE Q o A B c
- - . ® N N+l [(p~a)? + B2 -1 B _ -1 B i (N+l(p-v)
Y1 o + ig w v TN | B _—————(Y'd)z T B2 tan =g tan =5 —————_(Y-G) 21g?
Y2 = ~a - i = sin(BT+B)+Ce—YT
S 2 2
- - _o{ N 1 ‘/(p-a) + B -1 B _ -1 B p-y
Y3 Y 7 72z B (y-0)2 1 B2 tan o tan Y% | (v=a) 2387
y1 = -a X N (N+1) (p~a) (N+1) (p-B) {N+1) (p-v)
w Vv 2t (N+1) B-a) (y-a (a~BY (y-B) a~v) (B-Y)
y2 = =B = “BTice™ T
ys = -y % | u S b8 oy
v 2z (B-a) (y~a) (a-8) (y-8) (o-v) (B-7v)
y1 = -a X N (N+1) (0-a) (n+1) (p-v)
on 2{; (N"l"l) Y-0 (,Y_a) 2
Y2 = =0 = (At-C)e *T4ce 1T
Sw
= - _0 N [Shal® S el
Y3 Y v 2C Y-o (y-a)?
_. g | x| 1
yi = o -&?7- 2C(N+l) 2(N+l) (Q—G) N+1
Vo = =0 = (AT+B)'re_aT
Sw
Y3 = -0 __V_o_ % %(p-a) 1




For the special case of N = « (i.e., convential spring and
damper in parallel), the viscous damping ratio ¢ is also the frac-
tion of critical damping and the impulse response solutions are

somewhat simplified as shown below.

N =o0o; 7 < 1

. -TT _ —z
X = =S sin Vl—gz T + tan 1 2%}72?5— (15)
J 1-z® s

0o - sin ( 1-z2 ’L’> (16)
v 1-g®

£ = (@2-1) e&" (17)
weV
Swo & T (18)
Vv
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Wo _ 1 | ~-VEEEDT - (e VTP T (20)

Because of the importance of the peak values of acceleration
and displacement, the maximum values of the dimensionless accelera-
tion io/wov and the dimensionless displacement Sowo/v were obtained
for various values of the stiffness ratio N and the viscous dam-—
ping ratio . These results are displayed graphically in Figures
6 through 9. The curves in Figure 7, each for a particular value
of stiffness ratio N, all have a minimum at some value of .

These values of r will be designated as Zm and are shown plotted
versus the stiffness ratio N in Figure 10. The significance of
Zm is that for given values of mass m, stiffness k, and stiffness
ratio N, the damping ¢ determined from Zm will minimize the peak
acceleration xo. In Figure 8 it can be observed that for any
stiffness ratio N, the higher the value of the viscous damping
ratio ¢, the lower is the value of the dimensionless displacement

Sowo/V, and as r approaches infinity, 6owo/V approaches 1/ /ﬁ+1.

Optimization of Parameters

The parameters for this system have been optimized according
to the shock isolator optimization criteria which states: "For a
given input and maximum deflection of the isolator, find the iso-
lator parameters that will minimize the peak acceleration of the
isolated mass"”. In general, solutions to +his problem are diffi-
cult to obtain because the expressions for the maximum values can
not be written analytically and numerical search techniques must
be employed. However, for the system under consideration, the
influence of the three parameters wo, £, and N on the optimum
impulse response can be effectively separated. The undamped
natural frequency wo can be eliminated from the search procedure,

since letting -

12




£, (21)

pv - &
0
and
6owo
results in
ao%b :
v2 = Ql Q‘2 (23)

Figure 11 shows a plot of Equation (23) obtained as the
product of values of Xg/woV from Figure 6 and values of Sowo/V
from Figure 8. The minimum value of §o%o/V® represents the mini-
mum value of the acceleration X,, given the input V and the isola-
tor deflection §o. It can be seen from Figure 11 that the minimum
value of Soio/vz is 0.52 and the values of the parameters are N=«x
and ¢=0.4. Since there may be other criteria that require a
finite value of N, it was decided to keep N as a given parameter

and then optimize W and 'z for cextain values of N.

The values of r that minimize the curves in Figure 1l are
designated as the optimum viscous damping ratio gop and are plotted
in Pigure 12 versus the stiffness ratio N. Associated with each
value of Cop are values of Q4 and Q, from which the optimum un-

damped natural frequency (wo) can be obtained from Equation (21)

or (22) for a given value of 3% and either a given maximum acce-
leration io or a given maximum displacement 50, respectively. The
value of Q, corresponding to (. is designated as the optimum
frequency parameter So(wo)op/v and is plotted versus the stiffness
ratio N in Figqure 13. The optimum dimensionless acceleration ﬁo/g,

where g is the acceleration of gravity, is plotted versus the

13




dimensionless displacement parameter Gog/V2 for various values
of the stiffness ratio N in Figure 14. These curves are called
trade-off limit curves since they determine the minimum value of
peak acceleration that can be achieved given the maximum relative

displacement 60 and the level of the velocity shock V.

Also plotted in Figure 14 is a curve labeled "BEST POSSIBLE."
This result was obtained by considering the response of an isola-
tion system using a constant force device as the isolator. From

energy considerations

1/2 mv? = F § (24)

0

where F is the magnitude of the constant force. The maximum

acceleration io is F/m so that from Equation (24)

0.5 (25)

A similar result was obtained in Reference 7.

The value of Soio/vz is equal to 0.52 for thé system shown
in Figure l(a) with N = ©» and ¢ = 0.4 and, therefore, is only
4 percent worse than the best possible solution. However, the
system with the spring and viscous damper will return to its
initial position which could be an advantage. This is illustrated
in Figure 15 where the constant force F was chosen so that the
maximum isolator deflection would be the same for both systems.

Design Example

The following design example illustrates the use of the opti-
mum design graphs. It is required that the parameters N, z, and
W, which will minimize the maximum relative displacement be deter-
mined, given that the maximum allowable acceleration is 10 g's
(3860 in/sec?) and the input is a 100 in/sec velocity shock.

Since no restrictions are placed on the stiffness ratio N, take

14




Nop = o, From Figure 12, Cop = 0.4 and from Figure 13,

GO(wo)op/V = 0.6. ‘From Figure 14, with N =« and xo/g = 10,

the dimensionless displacement parameter is

60g
—v,—z— = 0.052

so that substituting the values of V and g results in
60 = 1.35 in. Using this wvalue of 60

(u)o)Op = 44.4 rad/sec; (fo)Op = 7.07 Hz

In some instances, system design or performance requirements
may dictate selection of finite values of N (e.g., high frequency
vibration isolation). In that case, parameters can be selected to
provide the best response to impulse (from Figures 11 through 14)
compatible with the desired vibration isolation performance (from
Reference 1l). Of necessity, t%is selection would involve a trial

¢
and error procedure. e

15




RANDOM VIBRATION RESPONSE

The random excitation to be considered is white noise accel-
eration of the base. This type of excitation has a uniform spec-
tral density WO which can be expressed as mean square accelera-
tion per cycle per second, over all frequencies from £ = 0 to
f =« [Ref. 8, p.28]. The responses of interest are the accel-
eration of the mass X and the relative deflection across the
isolator 6. The transfer functions for these guantities are
given by Equations (5) and (6), respectively. It is well known
that for a linear system, the spectral density of the response is
equal to the spectral density of the input times the square of the
magnitude of the appropriate transfer function [Ref. 8, pp.69-71].
Many of the transfer functions for this system have been obtained
in graphical form for a wide variation of the parameters N and

z, and will appear in a forthcoming monograph.t

One measure of the effectiveness of the vibration isolator
is the RMS values of the responses. The RMS value of the acceler-
ation X and the relative displacement & are determined using

the transfer functions given by Equations (5) and (6), respec-

tively [Ref. 8, p.71l]l. Written in nondimensional terms, these are:
X 2 2 2
RMS _ \ﬁ“ N® + 4 (N+1) " ¢ (26)
JW £ 8 NZ=¢
o o
S rMsS 1 N® + 4¢®
= —— (27)
3 = 3 2
Wo/fO (27) 8 N-°¢

+ This monograph, which is being prepared under Contract No.
NO0173-68-C-0072 for the Shock and Vibration Information Center
of the Naval Research Laboratory will be entitled "The Influence
of Damping in Vibration Isolation" by Jerome E. Ruzicka and
Thomas F. Derby.

16




Since the excitation spectral density WO is in terms of cycles

per second, the undamped natural frequency w, was converted to

2wfo, where fo is in units of cycles per second. Equations (26)

and (27) are displayed graphically in Figures 16 and 17, respectively.

For a random process which is stationary and normally distri-
buted with zero mean, the expected frequency fe (i.e., the average
number of zero crossings with positive slope per second) is given
as the RMS value of the derivative of the random variable divided
by the RMS value of the random variable [Ref. 8, p.44]. The ex-
pected frequency fe of the relative deflection & has been so

calculated and is given in nondimensional form as:

£ 2
e ANg
£ \[ N2+4z?2 (28)

This equation is displayed graphically in Figure 18. If the re-

sponse of the relative deflection & to the white noise accelera-
tion input is a narrow-band process (i.e., the response has the

appearance of a sinusoid of frequency fe but with slowly varying
random amplitude and random phase), then the expected frequency is

useful in predicting the fatigue life of the isolator [Ref. 8

’
pPp.115-125]. Therefore, care must be taken in using values of fe
from Figure 18 to insure that the response would be a narrow-band
process (e.g., a system with N = « and a high value of ¢ would
have a rather broad-band response).

The curves in Figures 16 and 17, representing the dimension-
less acceleration ﬁRMS/Uﬁ;E;- and the dimensionless displacement
GRM Wo/fo3, respectively, all have a minimum at some value of z.
These values of ¢ will be designated as [ and are plotted
versus the stiffness ratio N in Figure 19. The significance of
these values of [ is similar to the viscous damping ratio Cm
defined for impulse response, namely, for given values of the mass

m, the stiffness k and the stiffness ratio N, the damping ¢

17




can be determined from Cm such that either the RMS acceleration
iRMS or the RMS relative displacement SRMS are minimized. The
expressions for these values of &, are found by minimizing the

right side of Equations. (26) and (27) with respect to ¢ and are
given by

. = SINFIT (acceleration) (29)

(displacement) (30)

N2

Substituting these values of Cm into Equations (26) and (27)
results in the following:

(31)

(32)

Equations (31) and (32) are plotted in Figures 20 and 21, respec-
tively.

Optimization of Parameters

Similar to the analysis of impulse response, the parameters
for this system have been optimized according to the criteria:
"For a given input and RMS deflection of the isolator, find the
isolator parameters that will minimize the RMS acceleration of
the isolated mass". To accomplish this, the cube of Equation (26)

18




was multiplied by Equation (27) to obtain

3 2
Sems Frws  _ weeag?) /2 [nEra ) 2273/ (33)
W_? 64N 2

thus eliminating the parameter fo. Equation (33) is presented
graphically in Figure 22. Minimizing Equation (33) with respect
to N and ¢ results in NOp = o agnd Cop = 0,707. Again,
however, we will retain N as a parameter and optimize ¢ as a
function of N. This is done by minimizing Equation (33) with

respect to Z, which results in

toy = N2 (N+2) 14 2@m+1)® _ 4 (34)
B 12 (N+1) 2 N2 (N+2) 2

Equation (34) is displayed graphically in Figure 23. The

optimum natural frequency (fo)op can be okhtained as a function

of the stiffness ratio N by substituting the value of Cop given
in Equation (34) into either. Eguation (26) or Eguation (27). In
order to plot (fo)Op in the most convenient form, the reciprocal
of Equation (26) squared with ¢ = Cop is designated as the opti-
mum frequency parameter (Wb/%zRMS)(fo)op and is plotted versus

the stiffness ratio N in Figure 24. A plot of an optimum dimen-—

sionless acceleration X where g is the acceleration of

rms” 97
gravity, versus a dimensionless displacement .$§36RMS/W02 was

obtained for wvarious values of N by using Equation (33) with

z = Cop’ These curves, called trade-off limit curves, are shown
in Figure 25. The curve labeled N = « is also designated as
"BEST POSSIBLE". This result.was obtained in Reference 9,

Design Example

The following design example illustrates the use of the

optimum design graphs. It is required that, the parameters N,

19




z, and fO be determined, which will minimize the RMS acceleration,

given that the allowable RMS relative displacement is 0.1l inches
and the input is a random acceleration of the base with a uniform

spectral density equal to 0.1 g?/cps. The input spectral density
W_ = g? (0.1) so that
3
3 2
‘/ g GRMS/WO 0.296

o
Since no restriction is placed on the stiffness ratio N, let

N = o, From Figure 25 the optimum dimensionless acceleration
. . ' : =
XRMS/g is 1.83 g's. The value of gop corresponding to N = o

is Cop = 0.707. Also with N = o the value of the optimum fre-

.-2 >
quency parameter (WO/XRMS (fo)op is 0.3 as can be seen from

Figure 24. Therefore, (fo)Op = 5,5 cps.

Similar to the discussion of the design example for the
impulse response, a finite value of N may have to be chosen.
For this reason the optimizations have been presented in Figures

22 through 25 retaining N as a parameter.




RESPONSE TO VARIOUS PULSE SHAPES

The pulses to be considered in this section are shown in
Table II. All the pulses are acceleration time histories of the
base. The peak value is defined as éo, and the time duration as
t;. The area under the pulse is the velocity change associated
with that pulse, and is designated by V. In equation form

v=ysF 3 gt (35)
(o]

Equations of the time histories of base accelerations, as well as
the associated velocity changes are also given in Table II.

The velocity time histories of the base start at zero and
reach a value of V at time + = t,;, remaining at this constant
value for t>t;. The only distinction in the velocity time
histories is the manner in which the final value V 1is reached,
during the time t =0 to t = t;. If the natural period of the
responding system T is much larger than t;, it makes very
little difference how the final velocity value was reached. All
the pulses can then be considered as impulses of area V. This
is a fortunate result since in most cases the input can be con-
sidered as an impulse in the region of shock isolation (i.e., when
the peak response of the system io is less than the peak input
éo). This point will be discussed in more detail in the evalua-

tion of the shock spectra graphs.

The responses to be considered are the acceleration of the
mass X, and the relative deflection across the isolator §. The
main concern is the maximum value of these gquantities, designated
as io and 60, respectively. In order to nondimensionalize
these response quantities we will consider io/éo and Gowg/éo
as the response parameters, where w, = Jk/m is the undamped
natural frequency of the system shown in Figure 1l(a).

21




TABLE II

INPUT TIME~-HISTORY . VELOCITY

PULSE EXPRESSION FOR & CHANGE V
GoT 7

éo{sin(nt/tl) N
-
T “o
-~ + sinlm(t-t1)/t11U(t~t;)}
Half-Cycle
Sine
&
= a {1-U(t-t;)} it
—-P-! '. “"‘ © '
Rectangular
dof — ]
a
JZ{iin__ §-{l - cos(2mt/t1) 1

) = 3 t,

2 "o
t
V;;;eé—g;ie - (l-cos[2m(t~-t1)/t1]1)U(t-t1)}
dgf----

i | v 1 ..

! a8 {t/t1-[1+(t-t1)/t1]U(t-t1) } 5 a8 t,
—>l 1| ’4_ ° 2 o
Terminal-Peak

Saw-Tooth
dot--7 . 1 1

2ao{t/t1—-2 (t—f tl)/tlU(t-—z‘ ti)

. s
- 1, = t-tg 3 2ot
Symmetrical + t1 Ult-ty)}

Triangle
Go-

. el t=ty . 1.
I ao{l t/tr + < U(t-t1)} 5 8t
| :
Initial-Peak
Saw~Tooth
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Knowing the Laplace transform of the input &(s), we can
obtain the Laplace transform of the outputs X(s) and §(s)
from Equations (5) and (6), respectively. In the presentation of

the transforms it is convenient to define
Ty = wot1 (36)

as a nondimensional pulse duration similar to the definition of

T in Equation (14). Let
y = s/uw, (37)

The transforms s[i/éol and s[swé/éo] can then be obtained in

the form

glo(e)1 =

EII—‘

g(Y,Ter,C) _ (38)
O

where Q(t) stands for either /4  or 6mé/éo as a function

of time t. From the change of scale theorem [Ref. 10]

P

glf(at)] = 3 F(2) (39)
where F(s) = E£[£(£)]. Q(t) can be obtained by taking the
inverse transform of gl(s, T:, N, ) and replacing t by w,t
(i.e., using T = w t, Q(1) = £ 'ig(s, T1, N, £)]1. Therefore,

the maximum value of Q(t) will be a function of 11, N, and z.

The following subsections will give the equations for £[&],
S[i/éo], S[Smg/éo], i/éo, and Swg/éo for the six pulses: half-
cycle sine, rectangular, versed-sine, terminal-peak saw-tooth,

symmetrical triangle, and initial-peak saw-tooth.




Half-Cycle Sine Pulse

Using the definitions given for T and y in Equations
(36) and (37), respectively, the Laplace transform of the equation
for & given in Table II is

d(s)=glal = & Zol_ Y S (1 + e_le) (40)

where
A=ST/T (41)

Since the form of Equations (5) and (6) is the same, the trans-
forms and time histories of §/$O and 6wé/éo will have the
same form. The following table defines a quantity ©Q and
associated multiplier M and coefficient p to be used in the

transform and time history expressions.

Q M P
%/5 A (N+1) —
o 2z (N+1)

2 N

—Gwo/ao A 2—

Combining Equation (40) with Equations (5) and (6) results in

o(s) =i m y b = (1 + e_le) (42)
o (y? + Xz)[fs t 57 y? + (N + 1)y + 5%]
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The form of the time histories Q(t) depends on the nature
of the roots of the cubic expression in Equation (42). The case
where there are either two or three equal real roots will not be
considered since for the particular values of N and ¢ that
are to be used, the situation does not arise. The roots of the

cubic will be designated as yi, V2, and vs.

Case 1l: y; = -a + jB, y» = —d —=jB, and y3 = =Y. The inverse

transform of Equation (42) was obtained using transform pair 106

tRef. 11], and is given by
Q(t) = MIf(1) + £(t - T1)U(T - T1)] (43)
where

£(1) = Cie YT - C, sin(AT + ¢) + Csze &7 sin(BT + 6)

_ 2,42 |5 —a) 2 2 |&
c, ==X  , =|e_F2 C. = |p=@)” + B
! Xyl 73 82y7

X=v%2 +12 , ¥ = (y=a)2 + B2 , 2 = (¢2+B2-12)2+(20n)?2

-1 A -1 1 a2 + B%2 - )2

= A Yy -
¢ tan 5 + tan y tan Sah
- -1 B -1 y-a _ -1 a? - B2 + AZ
0 tan E:E-+ tan B tan 5GE
Case 2: y; = -0, y» = =B, and y3 = -y. The inverse transform

of Equation (42) was obtained using transform pair 244 [Ref. 11]
and is given by

Q(T) = MI£(T) + £(7 = T)U(T = T1)]1 (44)
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where

£(1) = C1e %" + Coe™PT 4 Cye™T 4 Cy sin(hT - V)
c p—0 c, = p-B
T O(B-a) (y-a) (@2+x%) 1 T2 (a=B) (y-B) (BZ+A?)
C = Py C == _J;r pz + >\2 %
P amy) (B-v) (YEP+AT) T TP T A [(a%4AF) (BF4A) (y2+xz)]
Y o= tan~t % + tan T % + tan T % - tan 1 A

Rectangular Pulse

The Laplace transform of the equation for & given in
Table II is

% (l—e—le) (45)

E'H

a(s)z=g£[al = 50
0

The following table defines a quantity Q and associated
multiplier M and coefficient p to be used in the transform

and time history expressions.

Q M o

. N+ 1 N
X/38, 2T (NF1)

N

— 2 e ————

Gmo/aO 1 5T
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Combining Equation (45) with Equations (5) and (6) results in

+ -—
M e - (-e TIY) (46)
) y[?3 + 57 vZ + (N+1) y + if]

Jis

Q(s) =

The roots of the cubic expression in Equation (46) will be

designated as yi, V2, and vys.

Case l: y1 = —-a + jB, v» = -0 -jB, and y; = -y. The inverse

transform of Equation (46) was obtained using transform pair 86

[Ref. 111 and is given by:

Q(t) = MIf(1) - £(1 - T)U(T - 7T1)] (47)
where
£(1) = C1 + Coe YT + C35e™ %" sin(BT + V)
1
ci =8, 0o =2, oo = 3E]°

(p-a)? + B2

X =0a% +82 , Y= (0~v)%2 + B? , 3

Case 2: y; = —d, Y2 = —B, and y3 = -y. The inverse transform

of Equation (46) was obtained using transform pair 27 [Ref. 11]

and is given by

Q(t) = M[£f(T) - £(t - T1)U(T -~ T1)] (48)




where

f(t) = C1 - Cze—OLT - Cse—BT - qu—YT
_ P _ p—a
€1 = Gy * 2 T EE-a) (-
- p 8 - p=Y
Cs = Bla=8) (v=p) ' * = Y(a=y) (B=7)

Versed-Sine Pulse

The Laplace transform of the equation for & given in
Table II is

wvmars] =z 1 A2/2 _~T1Y
a(s)=glal aomO T2y (l e ) (49)
where
AZ2T/T (50)

The following table defines a quantity @ and associated
multiplierr M and coefficient p +to be used in the transform

and time history expressions.

Q M p
%/3 (N+1) 22 N
o) 2 2z (N+1)
N
2 2 AN
—Gwo/aO ' Ac/2 5T
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Combining Equation (49) with Equations (5) and (6) results in

Q(s) = = M Y+ 0 - (1-e7Y) (s1)

o) y(y2+x2)[y3 + D13 v + (N+1) y + gf]

8’!—‘

The roots of the cubic expression in Equation (51) will be

designated as vyi, v2, and vs.

Case 1l: y; = -a + 3B, y2 = —-a - jB8, and ys3 = —-y. The inverse

transform of Equation (51) was obtained using transform pair 251

[Ref. 11] and is given by

Q(t) = MI£f(1) - £(1T - T1)U(T - 11)] (52)

aT

£(1) = C; —- Cre YT - Cze” sin(Bt+¢d) - Cy sin(AtT+06)

P - Y
vyI(a=y)2% + B21[vy2%+A2]

o
Cc, = C, =
YT Y (eZ+g2)az ' 2

ol

c, = L (p-a)? + B?
Bl (a?+B%)[(2aB)? + (a?-82+22)21[(y-a)?® + BZ%]

Wk

C. = 1 p® + A%
TN | (WEAD) [(2aM) 2 + (al+BZ-A2) 2]
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204
a2+82"'>\-2

Case 2: y; = -0, V2 = -8, and y3 = -y. The inverse transform

of Equation (51) was obtained using transform pair 245 [Ref. 11]
and is given by

Q(t) = M[£f(t) - £(1 - T1)U(T = T1)]

oT BT

C; - Cze— - Cge_ - qu_YT + Cs cos(AT+Y)

__0® _ p - o

YT aByAZ o (B=a) (Y-a) (a2+r?)

- p -~ B , = P~ Y
B (a—-B) (y-B) (B2+r2) ' v (0=y) (B=v) (y2+A?)

1
c - l-____ '02 + }\2 2
T AT (aZ+A?) (BZ+A2) (Y2+A2)

-1 -1

1
— + ta
o n

+ tan % - tan !

8
x




Terminal-Peak Saw-Tooth Pulse

The Laplace transform of the equation for & given in
Table II is

. —arz2] o w1 1/t _~T1y)y _ 1 -T1y
d(s)=glal = & ay [—§7l (l e 1 ) 7 e ! ] (54)

The following table defines a quantity Q and associated
multiplier M and coefficient p to be used in the transform

and time history expressions.

Q M p

o T1 27 (N+1)
a2 g N
6wo/ao 1/11 3T

Combining Equation (54) with Equations (5) and (6) results in

-1 vy +p _—T1Y
Qls) =3 M{ 5 2 . N N @-e )
yoily® +

2

(55)

Ta 3 N 2 y * o N e-_’l'-ly

The roots of the cubic expression in Equation (55) will be

designated as yi, Yz, and ys.

31




Case l: y; = -0 + jB, y» = -0 -~ jB, and y3; = -y. The inverse

transform of Equation (55) was obtained using transform pairs 90
and 86 [Ref. 11] and is given by

(1) = M{f; (1) = [f1(T = T1) + f2(1 = T2)IU(T - T1)3} (56)

where

aT

£fi1(t) = C; (t+Cy) + Cge_YT + Cye sin(BT+¢)

-

fa.(t) = T1[C1—YC3e_YT + Vu2+82 Cye %7 sin(BT+6)]

P 1 1 20

C1 = e+ D)

1 (p-a)? + B2

- P - Y — ,
Cs r Cu B (02+82) (y-a)? + B2

y2[(y-a)? + B2]

- -1 8 _ -1 B -1 B
$ = 2 tan 3 tan -3 + tan o
= -1 B8 -1 8 -1 8
0 = tan G- + tan g T ten 5-a
Case 2: y1 = =0, Y2 = -B, and y3 = -y. The inverse transform

Equation (55) was obtained using transform pairs 31 and 27
[Ref. 11] and is given by

Q(t) = M{fi(t) - [£fi:(T - T1) + £2(T - T1)IU(T ~ T1)} (57)
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£ ('l'.') = C3 (l+pT) - Cy + C3e—aT + Cq.e_BT -+ Cse—YT
£, (1) ='T1[C1p - aCsze %1 - BCL}e—'BT - che_YT]
1 p (aB+ay+By) p - a
Y oaBy ' T2 (aBy)* Y3 T wZ(B-a) (y-a)
Cy = p - 8 r Cs5 = e~ X

B2 (a-B) (y-B) v2 (a-v) (B-Y)

Symmetrical Triangle Pulse

The Laplace transform of the Equation for & given in
Table II is
T1

d(s)=g(d] = & +- 201 (1 - 2727 Y+ e‘T1Y> (58)
e} U.\o y

The following table defines a quantity Q and associated
multiplier M and coefficient p +to be used in the transform

and time history expressions.

Q M p

o yon 2 (N+1) N
x/a, TT1 2z (N+1)

2 /3 N

-Smo/ao 2/T1 5%
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Combining Equation (58) with Equations (5) and (6) results in

y + o -5+ -T1y)
M 5 ST \1-2e"2 Y 4+ &7"1Y) (59)
o yz[y3 + 57 vZ + (N+1) y + ——]

SII—'

Q(s) =
27

The roots of the cubic expression in Equation (59) will be
designated as yi1, yv2, and ys.

Case 1l: yi1 = -0 + jB, v, = —o - jB, and ys = -y. The inverse

transform of Equation (59) was obtained using transform pair 90
[Ref. 11] and is given by

Q(t) = M[f(T) - 2f(t~1:1/2)U(T-T:1/2) + f(t-11)U(T-T1) 1] (60)

where —

aT

f(1) = Ci(t + C2) + Cse ' 4+ cue” sin (BT + V)
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Cz = P — ¥ r Cy = 1 ‘/Tp_a)z + B2
Y2[(y-a)? + B2] B (a?+B2) (y-a)? + B2

1 _B + tan_l B

= -1 8 _ -
Y = 2 tan % tan T-a e

Case 2: y; = -d, Y2 = -B, and ys = -y. The inverse transform

of Equation (59) was obtained using transform pair 31 [Ref. 11]
and is given by

Q(t) = M[£f(t) - 2f(t-T1/2)U(T~T:/2) + £(1=-11)U(Tt-T1)]1] (61)

where

BT

ot

£(1) = C1 (L + pT) - Cs + Cze %T + Cue ™ T + Cse” /"

, = p (aB+ay+By) , Cs =

(aBy) 2

p - d
a? (B-a) (y-o)

= p - B - o - Y
Co = 8208 (v=B) ' °° T T (a=7) (B-v)




Initial~Peak Saw-Tooth Pulse

The Laplace transform of the equation for & given in
Table II is

a(s)z=gla]

The following table defines a quantity Q and associated
multiplier M and coefficient p +to be used in the transform

and time history expressions.

XN

- 2 )
Swo/ao 37

Combining Equation (62) with Equations (5) and (6) results in

T1(y + p)

N 2

y2 + (N+1) y +

N i N ] <l_e_T1y>}

2z 2z,




The roots of the cubic expression in Equation (63) will be

designated as vyi, v2, and ys.

Case 1l: y1 = -a + jB, yv2 = -a - jB, and y3 = -y. The inverse

transform of Equation (63) was obtained using transform pairs
90 and 86 [Ref. 11] and is given by

Q(t) = M[f, (1) - £1(1) + £1(7-T1)U(T~-T1)]1 (64)
where
£1(1) = C1 (14C2) + Cse 10 + Cuye 2T sin(BT+9)
£, (t) = rltcl—ycae'YT + Vu2+82 Cue_mT sin(BT+6ﬂ
c, = P =1 _1_ _2¢c
T Y(a2+g%) | 7 P Y gZ4p?
_ N2 2
Cs = P - Y . Cy = 1 (p-a)” + B

v2[(y-a)? + B?1] B (a?+82) (y-a)2 + B2
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Case 2: y1 = -0, y2 = -8, and y3 = -y. The inverse transform
of Equation (63) was obtained using transform pairs 31 and 27

[Ref. 1ll1l] and is given by

Q(t) = MIf2(7) - £1(T) + £1(T-7T1)U(T-T1)] (65)

where

aT

£, (1) C, (l+pT) - Co + Cse_

+ cte BT 4 g7

fi(t) = T1[¢10-QC3ehaT - BCLe BT che-YT]
- 1 _ p(aB+ay+By) - p - o
C -— - r C - r - 3
! agy 2 (aBY) 2 ¢ a? (g-a) (y-a)
Cy = p - B C. = o -

B2 (a—B) (y=B) '~ vZ(o-v) (B-Y)

Graphical Presentation of Results

For each pulse, the results are presented in terms of the
peak values of the guantities i/éo and § wg/ao. The peak
values are designated as a dimensionless acceleration io/éo
and a dimensionless displacement Gowg/éo. Both 'io/éo and
Gowg/éo are functions of the system parameters N and g, and
of the nondimensional pulse duration T; = wot1. In the presenta-
tion of the results, the stiffness ratio N takes on the values
1, 3, 8, 24, and «, The viscous damping ratio ¢ takes on the
values 0, 0.1, 0.2, 0.3, 0.5, 1, 2, 5, 10, and « for the finite
values of N and the values 0, 0.1, 0.5, and 1 for N = «, The

dimensionless acceleration io/éo and the dimensionless
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displacement 60“2/50 are plotted versus a time ratio €i/T
where T = 27r/mo (i.e., t1/T = T11/27). For each graph there is

a particular value of the stiffness ratio N and each curve on
the graph is for a particular value of the viscous damping ratio
. The results are presented for the six pulses in the following
order: half-cycle sine, rectangular, versed-sine, terminal-peak
saw—tooth, symmetrical triangle, and initial-peak saw-tooth. Each
pulse has ten graphs associated with it in the following order:
the dimensionless acceleration for the five values of N, and the
dimensionless displacement for the five values of N. Hence,
there are a total of 60 shock spectra graphs comprising Figures
26 through 85.

Numerical Procedures.-For the finite values of N, the results
were obtained using a digital computer and the graphs were plotted
automatically. It was determined that at least 150 points per

curve were necessary to adeguately define each curve. There are
two response quantities, four values of N, ten values of g, and
150 points per curve for each of the six pulse shapes. Therefore,
72,000 time histories were analyzed to determine their peak values.
Since there are so many time histories it is important to deter-
mine a fairly simple automated procedure to find their maximum

value.

The procedure of setting the derivative of the time history
to zero, solving for the time, and then substituting the time into
the original equation was not used for two reasons: (1) the equa-
tions to be solved are fairly complicated transcendental equations;
and (2) most of the time histories have many local maxima and
minima so that the transcendental equation would have to be solved
many times to find the global maximum. Instead, the problem was
first set up on an analog computer and estimates were made of
where the maximum would occur in time, and how fast the function
was varying with time. Then values of the time history were com-
puted over a range including the estimated time of the maximum

value.




For those time histories that had sharp peaks at their maxi-
mum value an approximate damped natural frequency was determined,
using the undamped natural frequency expression and substituting
the real part of the complex stiffness of the system for the
stiffness K of the undamped system. This resulted in a damped
natural frequency wy that was related to the undamped natural
frequency w, as follows [Ref. 12]

R S [ PP

Solving this equati?n, and using the definitions Tq = 2W/wd;
T = 2ﬂ/wo; A = gE] ; and B = N + 1, the expression for the

damped natural period is given by:

T, = \/—2_ T (67)

\o-A + NV(B-A) 2 + 4a

Since the time histories are written in terms of a nondimensional
time T = w t, it is desirable to define a nondimensional natural

period as

Tq=w, Tyq (68)
To achieve the desired degree of accuracy (approximately one

percent error) it was found by trial and error that 20 points per

period were necessary. A nondimensional time increment AT was

determined from Equations (67) and (68) as follows

AT = V2_(2m) /20 (69)
JB—A + \V(B-a)2 + 4A
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A= (N/22)%2 , B=N+ 1

The damped free vibration natural frequency (i.e., the
imaginary part of the complex roots obtained from the character-
istic equation) cannot be used to determine At. For the
overdanmped condition, the damped free vibration natural frequency
does not exist. When the system is close to being critically
damped, this frequency is very low, and is not at all indicative
of how fast the system can respond to the input.

When the time history was being computed, the maximum value
as well as the values on each side of maximum were determined.
A parabola was then passed through these three points, and the
peak value of the parabola was taken as the maximum value of the

time history.

Comparison to Impulse Response

As the pulse duration +t: becomes very small compared to the
natural period T, the response cannot follow the input and the
input becomes essentially an impulse. On the graphs, the straight
line asymptotes that the curves follow as t:/T+0, are the curves

that would be obtained if the pulses were considered as impulses.

From Figure 6, for some particular values of N and ¢,
there will be a particular value, say Qi, for the guantity

§O/wov. In equation form

%
0 _ (70)
60_‘7 = Q; (N, )
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From Table II, V = 50 t1 for the half-cycle sine pulse. Using

w, = 2m/T, Equation (70) can be rewritten as

2
i

=> = 40: (N, £) £1/T (71)

Equation (71) is the equation for the straight line asymptotes in
Figures 26 to 29. Similarly the equation for the straight line
asymptotes for the rectangular pulse is

3.{O
22 = 2701 (N, T) £,/T (72)
e}

and the equation for the straight line asymptotes for the versed-
sine, terminal-peak saw-tooth, symmetrical triangle, and initial-
peak saw-tooth pulses is

we

2

3
o)

= mQ:1 (N, z) t1/T (73)

Since most of the shock spectra curves for io/éo are
essentially straight lines below io/éo = 1, which is the shock
isolation region, the pulse can be considered as an impulse in
this region and all of the results in the section dealing with
the response of the system to an impulse are applicable. This
is a fortunate result, since if the isolation system is being
designed primarily to isolate one of these pulses, certainly the
desired vdlue of io/éo would be less than unity. Therefore,
the shock spectra graphs (Figures 26 through 85) would be used
primarily for analysis of shock response of a system designed to

provide vibration isolation
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RESULTS AND CONCLUSIONS

The results of this investigation of an isolation system

using relaxation type damping are:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Determination and graphical presentation of the regions
where the system is underdamped and overdamped as a func-

tion of the system parameters.

Expressions and graphical presentation for the accelera-
tion of the mass and the deflection of the isolator in

response to an impulse acceleration of the foundation.

Optimization of the parameters for the impulse response
according to the criteria: for a given input and maximum
deflection of the isolator, minimize the maximum accelera-

tion of the isolated mass.

Presentation of trade-off limit curves for the optimized

system,

Same'as (2), (3), and (4) above except that the input is
white noise acceleration of the foundation and the re-
sponses are the RMS levels of the acceleration of the

mass and the deflection of the isolator.

Expressions and graphical presentation for the accelera-
tion of the mass and the deflection of the isolator in
response to six acceleration pulses of the foundation as
follows: half-cycle sine, rectangular, versed-sine,
terminal-peak saw-tooth, symmetrical triangle, and

initial-peak saw-tooth.

Comparison of—the pulse excitation responses to the

impulse responses.
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Specific conclusions drawn are:

44

(1)

(2)

(3)

(4)

For values of the stiffness ratio N less than eight,
the system is underdamped regardless of the value of the
viscous damping ratio ¢; for values of N greater than
eight there are two values of ¢ for which the system
is critically damped and the system is overdamped for

values of ¢ between these two values.

The optimum value of the viscous damping ratio ¢ is
different for different criteria. In this report, five
different criteria were used resulting in the five
different curves shown in Figures 10, 12, 19, and 23.
Also, these curves differ from similar optimum viscous
damping ratio curves obtained by minimizing the resonant

response to sinusoidal vibration [Ref. 13].

The optimum value of the stiffness ratio N was found

to be infinity for both the impulse response and random
vibration using the criteria: for a given impulse (white
noise) input and a maximum (RMS level) deflection of the
isolator, minimize the maximum (RMS level) acceleration
of the mass. The optimum values of the viscous damping
ratio corresponding to N = o« are gop = 0.4 for impulse
response and cop = 0.707 for random vibration. However,
both of these isolation systems would make very poor high

frequency vibration isolators.

Comparing the optimum relaxation system for impulse re-
sponse in (3) above to the best possible system, showed
that the optimum relaxation system was only 4 percent worse
(i.e., for a given input and deflection, the acceleration
was only 4 percent greater than the acceleration obtained
by the best possible system). The best possible isolator
for this criteria is a constant force device (e.g., Coulomb

friction damper or crushing material). Unless an active




(5)

(6)

(7)

(8)

mechanism is employed, the constant force device does

not return to its initial position whereas the system
with a spring and viscous damper does. Another dis-
tinction is that if the input were doubled, both the
acceleration and deflection of the system with the spring
and damper would be doubled whereas, for the system with
a constant force device, the acceleration would stay the

same and the deflection would be guadrupled.

The optimum relaxation system for random vibration in (3)
above is identical to the best possible linear system for
this criteria [Ref. 9].

The optimum values of N and ¢ for both impulse re-
sponse and random vibration are not dependent on the
desired trade-off between acceleration and deflection.
The trade-off between acceleration and deflection is
dependent only on the undamped natural frequency W,
and the magnitude of the input.

The optimum solutions for both impulse response and
random vibration are not overly sensitive to changes in
the parameters N and ¢ from their optimum values.
This sensitivity is depicted in Figure 11 (impulse re-

sponse) and Figure 22 (random vibration).

In the region of shock isolation (i.e., for the peak
acceleration of the mass less than the peak input
acceleration) the responses to the six pulses are
essentially equal to the impulse responses. Therefore,
in this region all of the results for the impulse re-
sponse, including the optimizations, are applicable to

the responses to the pulses.

A final comment must be made regarding the selection of

values of N other than N = =, The difference between the

vibration isolators shown in Figures l(a) and (b), and the
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conventional model of an isolator (i.e., a spring and damper in
parallel) can be thought of in terms of the stiffness ratio N.
If N = «, both systems shown in Figure 1 reduce to the conven-
tional model. Values of N other than N = « have to be con-~
sidered since: (1) many isolation systems can be represented by
models having a finite value of N; and (2) there are certain
desirable features of an isolation system having a finite value
of N,

An example of an isolation system having a finite value of
N 1is one that uses an elastomer as a resilient element. Elasto-
mers can be very effectively modeled by the systems shown in
Figure 1, but not by the conventional model [Ref. 4]. Another
example is the suspension system of automobiles. This system can
be represented by the model shown in Figure 1l(b) where k repre-
sents the stiffness of the suspension system and Nk represents
the stiffness of the tires. To obtain a value of N equal to
infinity, the tires would have to be infinjtely stiff.

One desirable feature of an isolation system employing an
elastically coupled damper resides in the fact that it acts as
though it were undamped for high frequency excitation but damped
at resonance, thereby giving good high frequency isolation while
controlling the maximum response at resonance. Another desirable
feature is that a finite value of N _ greatly reduces the jerk
(i.e., the derivative of acceleration) of-the isolated mass. If
the isolated mass happens to be a human, this results in a much

more comfortable ride.

Therefore, although in the examples discussed for the impulse
response and random vibrations the optimum value of N is N = o,
the results are shown as a function of N since they would be

useful in many actual design applications.
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85




N
o
>
=z
(@ ]
-t
—
<
0 4
w
—
L
(&)
(&)
<
wn
w
w
_
=2
o
—
(7))
=
w
=
—
a

86

LETTER @ b ¢ d e f g h i j| G
L 0O Ol 02 03 05 I 2 5 j0 @
R
2 T -
i
f b
h[/ —
T
1.9 =
[l e —
[ f
1
0.5 -+
- I — _ + S (N S E— }
D R PR WE— 1 R _ai_—ﬁ
_ 4. S U S W -4 N=8
I
0
0 1 2 3 4

TIME RATIO. t/7T
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rectangular pulse input for the isolation
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Figure 41l.-Peak displacement response to an acceleration
rectangular pulse input for the isolation
system shown in Figure l(a) with N = 1
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LETTER a b ¢ d e f g h i j Gg
g O Ol 02 03 05 | 2 5 10 @
P B S
2 N
}“ -
> A :
:
— 1.5 [L/r
Z , d
= | - :
s il -
a /4 ;
o L
p // [l |~ ‘_,__2_*_},44;‘ e
4 AT
L~ Lt
5 / et —
2 0.5 [/ 1 // ' —
w // /Z )///jw L] i L
o B . < B B B AU S T S T TR N
7// /+—---u~—4~- 4 4-r L Ll N=24.
/1L . Ny N I O Y i i
0 1 |
0 1 2 3 4

TIME RATIO, t/7T
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system shown in Figure 1l(a) with N = 1
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Figure 48.-Peak acceleration response to an acceleration
versed-sine pulse input for the isolation
system shown in Figure 1(a) with N = 8
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system shown in Figure l(a) with N = 24
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Figure 56.-Peak acceleration response to an acceleration
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isolation system shown in Figure 1l(a) with N = 1
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Figure 57.-Peak acceleration response to an acceleration
terminal-peak saw-tooth pulse input for the
isolation system shown in Figure 1l(a) with N = 3
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Figure 58.-Peak acceleration response to an acceleration
terminal-peak saw-tooth pulse input for the
isolation system shown in Figure l(a) with N = 8
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Figure 59.-Peak acceleration response to an acceleration
terminal-peak saw-tooth pulse input for the
isolation system shown in Figure 1l(a) with N = 24
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Figure 6l.-Peak displacement response to an acceleration
terminal-peak saw-tooth pulse input for the
isolation system shown in Figure 1l(a) with N = 1

109




LETTER ¢ b ¢ d e f q h i j| Gg-—3
£ O Ol 02 03 05 | 2 5 10 @
—-»-1" |t —
2.0 T 1
L N=3 . _
Q
O
N O
3
= _
D
= 1.5
=z
L
>
Ll_l a
g(J /1 _
S /1o
= 1.0 A ‘
o . /dA\
.,.f_u -t —
w
2 o T L
- j/ /| 1 | | L+
2 W L L=
w //i'—-‘
Z 0.5 -~ ;
W A/frgxi'! -+
o :?~’€:::::tfffi [ L —petee .
< T | — S
| ; .’ '
e I'S - i + —t—— -
| |
0.0 ! L ]
0 1 2 3 4

TIME RATIO, 4/
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Figure 63.-Peak displacement response to an acceleration
terminal-peak saw-tooth pulse input for the
isolation system shown in Figure 1l(a) with N = 8
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Figure 66.-Peak acceleration response to an acceleration
symmetrical triangular pulse input for the
isolation system shown in Figure 1(a)
with N = 1

114




odo‘

OIMENSIONLESS ACCELERATION, ¥

LETTER ¢ b ¢ d e f g h i | af“j‘
4 QO.IO.20.30.5|25|0<D;" 1
- L-
2.0 T
— N=3
i (-]
S
1 NN
g b\;\\
TR
2 e
1.0 | h
N i
N
0.5
0.0
0 1 2 3 4

TIME RATIO. t/T

Figure 67.-Peak acceleration response to an acceleration
symmetrical triangular pulse input for the
isolation system shown in Figure 1 (a)
with N = 3
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Figure 71.-Peak displacement response to an acceleration
symmetrical triangular pulse input for the
isolation system shown in Figure 1(a)
with N = 1

119




LETTER ¢ b ¢ d e f g h i j '°'°““i'
4 0O Ol 02 0305 | 2 5 |0 @ i
- 1 L—
2.0 T
S N=3
:co
N3O -
S
* 1.5
= AN
[
: NN
N LA TN =
o 7/ \\ -
o 10 /y 7 .
g ] + ]
83 4 44E¢4"‘
5 0.5 > P
ot ~— L T
O e l
\L.z 1 T =
_ L 4 | R S
0.0
0] 1 2 3 4

TIME RATIONt/T

Figure 72.-Peak displacement response to an acceleration
symmetrical triangular pulse input for the
isolation system shown in Figure 1l(a)
with N = 3
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Figure 73.-Peak displacement response to an acceleration
symmetrical triangular pulse input for the
isclation system shown in Figure 1(a)
with N = 8
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Figure 74.-Peak displacement response to an acceleration
symmetrical triangular pulse input for the
isolation system shown in Figure 1l(a)
with N = 24
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Figure 76.-Peak acceleration response to an acceleration
initial-peak saw-tooth pulse input for the
isolation system shown in Figure 1l (a)
with N = 1
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Figure 77.-Peak acceleration response to an acceleration
initial-peak saw-tooth pulse input for the
isolation system shown in Figure 1 (a)
with N = 3
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Figure 78.-Peak acceleration response to an acceleration
initial-peak saw-tooth pulse input for the
isolation system shown in Figure 1 (a)
with N = 8
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Figure 79.-Peak acceleration response to an acceleration
initial-peak saw~tooth pulse input for the
isolation system shown in Figure 1l(a)
with N = 24
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Figure 80.-Peak acceleration response to an acceleration initial-peak

saw-tooth pulse input for the isolation system shown in
Figure 1l(a) with N = =
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Figure 8l.-Peak displacement response to an acceleration
initial-peak saw-tooth pulse input for the
isolation system shown in Figure 1(a)
with N = 1
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Figure 82.-Peak displacement response to an acceleration
initial-peak saw-tooth pulse input for the
isolation system shown in Figure 1(a)
with N = 3
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Figure 83.-Peak displacement response to an acceleration
initial-peak saw-tooth pulse input for the
isolation system shown in Figure 1 (a)
with N = 8
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Figure 84.-Peak displacement response to an acceleration
initial-peak saw-tooth pulse input for the
isolation system shown in Figure 1 (a)
with N = 24




Figure 85.-Peak displacement response to an acceleration initial-peak
saw-tooth pulse input for the isolation system shown in
Figure 1l(a) with N = o«
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